Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
Chinese Journal of Biotechnology ; (12): 108-117, 2011.
Article in Chinese | WPRIM | ID: wpr-351528

ABSTRACT

Glycosylation is vital for activity, higher structure and function of protein. Glycoproteins derived from yeast contain N-glycan of high mannose type and are usually hyperglycosylated, while those from mammalian cells contain N-glycan of hybrid or complex type. We introduced the alpha-1,2-mannosidase I (MDSI) into yeast cells, which catalyzed an essential proceeding of N-glycan structures from Man8GlcNAc2 to Man5GlcNAc2. The plasmids contained MDSI genes from Homo sapiens [HMDSI(delta185)] or Arabidopsis thaliana [ATMDSI(delta48)], and three ER-signals were used to be transformed a mutant Pichia pastoris GJK01, respectively. The reporter protein HSA/GM-CSF (human serum albumin and granulocyte-macrophage colony stimulating factor fusion protein) was expressed and its N-glycans were analyzed by DSA-FACE (DNA sequencer assisted fluorophore-assisted carbohydrate electrophoresis). The plasmid contained ER-ScMnsI-ATMDSI(delta48) was expressed in Pichia pastoris, the Man5GlcNAc2 N-glycan on secreted glycoprotein HSA/GM-CSF was observed. The research reported here provided basic substrate to obtain the hybrid- and complex-type glycans in mammalian cell.


Subject(s)
Humans , Gene Transfer Techniques , Genetic Vectors , Genetics , Glycoproteins , Glycosylation , Mannose , Oligosaccharides , Genetics , Pichia , Genetics , Metabolism , Recombinant Proteins , Genetics , alpha-Mannosidase , Genetics
SELECTION OF CITATIONS
SEARCH DETAIL